Li

verify-tag线描图画上色工具

线描图画上色工具图像处理AI工具

5.9

已售 0
463.86MB

数据标识:D17441805124997272

发布时间:2025/04/09

数据描述

 

Welcome to style2paints V4!

Style2paints V4 is an AI driven lineart colorization tool.

   

Different from previous end-to-end image-to-image translation methods, style2paints V4 is the first system to colorize a lineart in real-life human workflow, and the outputs are layered.

Inputs:

● Linearts
● (with or without) Human hints
● (with or without) Color style reference images
● (with or without) Light location and color
 

Outputs:

● Automatic color flattening without lines (solid/flat/inherent/固有色/底色 color layer)
● Automatic color flattening with black lines
● Automatic colorization without lines
● Automatic colorization with black lines
● Automatic colorization with colored lines
● Automatic rendering (separated layer)
● Automatic rendered colorization
 

Style2paints V4 gives you results of the current highest quality. You are able to get separated layers from our system. These layers can be directly used in your painting workflow. Different from all previous AI driven colorization tools, our results are not single 'JPG/PNG' images, and in fact, our results are 'PSD' layers.

User Instruction: https://style2paints.github.io/

And we also have an official Twitter account.

Help human in their standard coloring workflow!

Most human artists are familiar with this workflow:

sketching -> color filling/flattening -> gradients/details adding -> shading
 

And the corresponding layers are:

lineart layers + flat color layers + gradient layers + shading layers
 

Style2paints V4 is designed for this standard coloring workflow! In style2paints V4, you can automatically get separated results from each step!

Examples

logo

Here we present some results in this ABCD format. Users only need to upload their sketch, select a style, and put a light source.

When the result is achieved immediately without any human color correction, we regard this result as fully automatic result. When the result needs some color correction, human can easily put some color hints on the canvas to guide the AI coloring process. In this case, we regard these results as semi-automatic results. If a result is semi-automatic, but the quantity of human color hint points is smaller than 10, we regard these results as almost automatic result. In this section, about half of the presented results are fully automatic result, and the others are all almost automatic result. Do notice that all the below results can be achieved with less than 15 clicks!

logo

logo

Real-life results

logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo logo

 
 
 

 

Previous Publications

Style2paints V1:

ACPR 2017:

@Article{ACPR2017ZLM,
  author  = {LvMin Zhang, Yi Ji and ChunPing Liu},
  title   = {Style Transfer for Anime Sketches with Enhanced Residual U-net and Auxiliary Classifier GAN},
  conference = {Asian Conference on Pattern Recognition (ACPR)},
  year    = {2017},
}
 

paper

Style2paints V2:

No Publications.

Style2paints V3:

TOG 2018:

@Article{ACMTOGTSC2018,
  author  = {LvMin Zhang, Chengze Li, Tien-Tsin Wong, Yi Ji and ChunPing Liu},
  title   = {Two-stage Sketch Colorization},
  journal = {ACM Transactions on Graphics},
  year    = {2018},
  volume  = {37},
  number  = {6},
  month   = nov,
  doi     = {https://doi.org/10.1145/3272127.3275090},
}
 

paper

Style2paints V4:

No Publications.

Style2paints V5 (Project SEPA, not released yet):

CVPR2021

@InProceedings{Filling2021zhang,
  author={Lvmin Zhang and Chengze Li and Edgar Simo-Serra and Yi Ji and Tien-Tsin Wong and Chunping Liu}, 
  booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, 
  title={User-Guided Line Art Flat Filling with Split Filling Mechanism}, 
  year={2021}, 
}

验证报告

以下为卖家选择提供的数据验证报告:

data icon
线描图画上色工具
5.9
已售 0
463.86MB
申请报告