以下为卖家选择提供的数据验证报告:
数据描述
This dataset can serve as a benchmark for models used to solve PDEs.
Given low-resolution data, models are required to predict high-resolution solutions and perform extrapolation.
Update
There is a private competition (in Chinese) based on this dataset. Feel free to participate in this competition.
The baseline (in Chinese) is in this repo
Description of the Rayleigh–Bénard Convection
The Rayleigh–Bénard Convection of this dataset is as follows:
$$ \frac{\partial{u_x}}{\partial{t}} +u_x\frac{\partial{u_x}}{\partial{x}}+u_y\frac{\partial{u_x}}{\partial{y}}=-\frac{1}{\rho}\frac{\partial{P}}{\partial{x}}+ R(\frac{\partial^2{u_x}}{\partial{x^2}}+\frac{\partial^2{u_x}}{\partial{y^2}}) $$ $$ \frac{\partial{u_y}}{\partial{t}} +u_x\frac{\partial{u_y}}{\partial{x}}+u_y\frac{\partial{u_y}}{\partial{y}}=-\frac{1}{\rho}\frac{\partial{P}}{\partial{y}}+ R(\frac{\partial^2{u_y}}{\partial{x^2}}+\frac{\partial^2{u_y}}{\partial{y^2}})+T $$ $$ \frac{\partial{T}}{\partial{t}}+u_x\frac{\partial{T}}{\partial{x}}+u_y\frac{\partial{T}}{\partial{y}}=P(\frac{\partial^2{T}}{\partial{x^2}}+\frac{\partial^2{T}}{\partial{y^2}}) $$ $$ \frac{\partial{u_x}}{\partial{x}}+\frac{\partial{u_y}}{\partial{y}}=0 $$ $$ R=\sqrt{\frac{Pr}{Ra}} $$ $$ P=\sqrt{\frac{1}{RaPr}} $$
where u_x
and u_y
are the x component and y component of the velocity, respectively. T
and P
are dimensionless temperature and pressure, respectively. Ra=1e6
is the Rayleigh number, Pr=1
is the Prandtl number, and ρ=1
is the dimensionless density.
Description of files
This dataset contains three files.
- t50_ra1e6_pr1_s42_train_lr.npz: the low-resolution data of 0-44.75s.
- test.csv: the test dataset.
- gt.csv: the ground truth of the test dataset.
Columns
id
: The ID of each samplet
: the time component of the coordinatex
: the x component of the coordinatey
: the y component of the coordinateu
: the x component of the velocityw
: the y component of the velocityT
: the dimensionless temperatureP
: the dimensionless pressure
